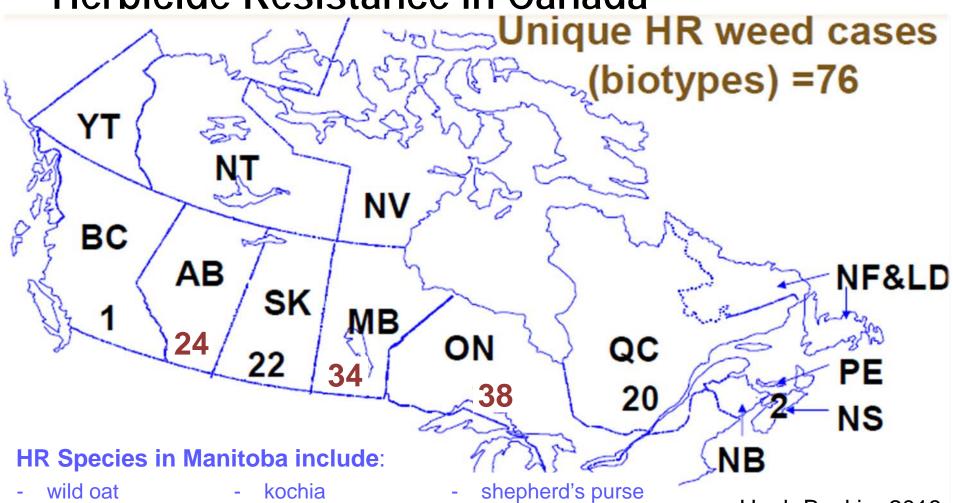
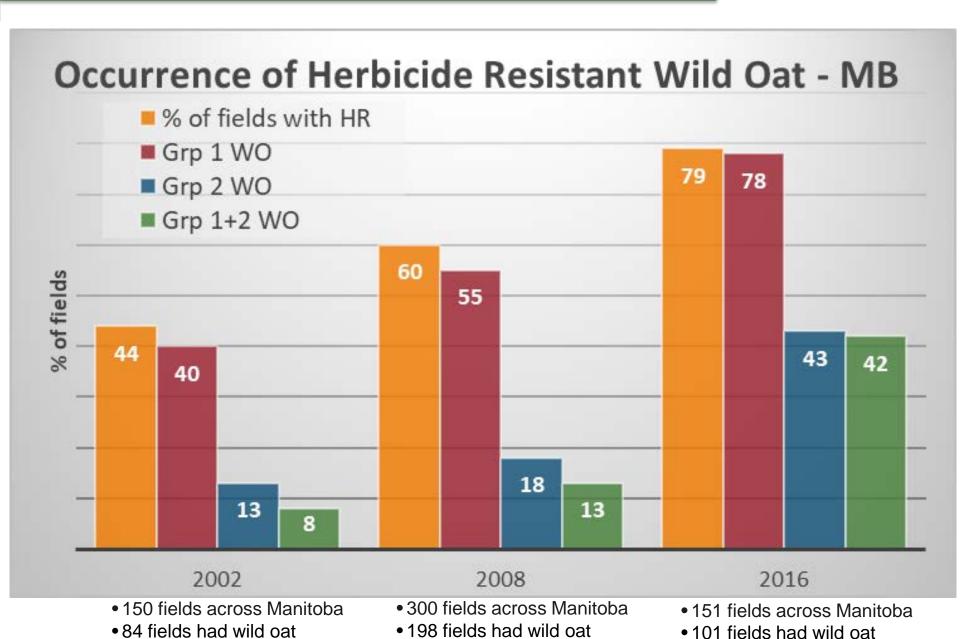
Losing the Weed Battle Could Mean Losing the Farm


Tammy Jones
Weeds Specialist,
Manitoba Agriculture and Resource Development

Ag Days January 23rd, 2020

Herbicide Resistance in Canada



- g & y foxtail
- barnyard grass
- wild mustard
- chickweed
- cleavers
- hempnettle

- stinkweed
- pigweeds

Hugh Beckie, 2018

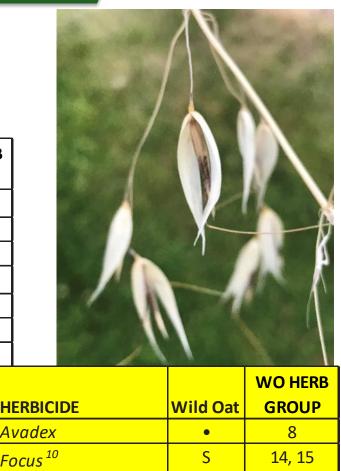
...but I don't have a problem with wild oat

- low seed production
- self-pollinated
- no dispersal mechanism
- seedbank longevity

Wild Oat Control Options in Wheat

	COITH		puona m
HERBICIDE	Wild Oat	WO HERI GROUP	
Altitude FX2 ⁶	•	2	
Avadex	•	8	
Axial	•	1	
Axial iPak	•	1	7
Axial Xtreme	•	1]
Broadband	•	1	HERBICIDE
Clodinafop	•	1	Altitude FX2 ⁶
Fenoxaprop	•	1	Avadex
Flucarbazone	•	2	Flucarbazone
Focus ¹⁰	S	14, 15	Focus ¹⁰
Fortress MicroActiv	•	3,8	Fortress MicroAc
Imazamethabenz	•	2	Imazamethabenz
Olympus	S	2	Predicade
Predicade	•	2	Rexade
Rexade	•	2	
Rezuvant	•	1	Simplicity OD/
Signal SFU	•	1	Simplicity GoDRI
Simplicity OD/	•	2	Tandem
Simplicity GoDRI			Varro
Tandem	•	2	Velocity m3
Tralkoxydim	•	1	
Traxos	•	1,1	
TraxosTwo	•	1,1	
Tundra	•	1	
Varro	•	2	
Velocity m3	•	2	┙

HERBICIDE	Wild Oat	WO HERB GROUP
Altitude FX2 ⁶	•	2
Avadex	•	8
Flucarbazone	•	2
-Focus ¹⁰	S	14, 15
Fortress MicroActiv	•	3,8
Imazamethabenz	•	2
Predicade	•	2
Rexade	•	2
Simplicity OD/	•	2 <mark>F</mark>


•

2

2

2

Fortress MicroActiv

3,8

Wild Oat Control Options in Canola

HERBICIDE

Ares

Avadex

Clethodim

Edge Granular

Fortress MicroAct

Glufosinate 150 (1

Glyphosate

Glyphosate+Clopy

Imazamox

Imazamox/imazet

Odyssey Ultra

Poast Ultra

Quizalofop

Salute

Solo Ultra

Tensile

Trifluralin

GROUP G/9 RESISTANT WILD OAT (Avena fatua)

EPSP synthase inhibitors (G/9)

Australia, Queensland

Case Details

Similar Cases Globally

Papers for Similar Cases

INTRODUCTION

Wild Oat (Avena fatua) is a monocot weed in the Poaceae family. In Queensland this weed first evolved resistance to Group G/9 herbicides in 2018 and infests Chickpea. Group G/9 herbicides are known as EPSP synthase inhibitors (Inhibition of EPSP synthase). Research has shown that these particular biotypes are resistant to glyphosate and they may be cross-resistant to other Group G/9 herbicides.

The 'Group' letters/numbers that you see throughout this web site refer to the classification of herbicides by their site of action. To see a full list of herbicides and HRAC herbicide classifications <u>click here</u>.

WILD OAT

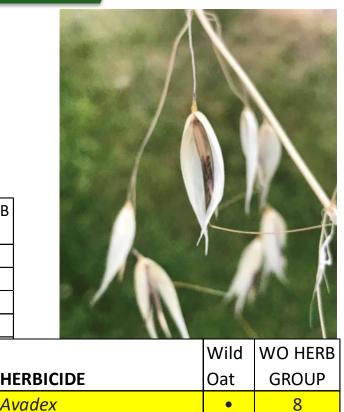
QUIK STATS (last updated Jan 22, 2020)

Common Name Wild Oat

Species Avena fatua

Group EPSP synthase inhibitors (G/9)

Wild Oat Control Options in Canola


	Wild	WO HEF	RE
HERBICIDE	Oat	GROU)
Ares	•	2	
Avadex	•	8	
Clethodim	•	1	
Edge Granular	S	3	
Fortress MicroActiv	•	3/8	
Glufosinate 150 (1.35L/ac)	•	10	
Glyphosate	•	9	<u> </u>
Glyphosate+Clopyralid	•	9/4	/
Imazamox	•	2	Í
Imazamox/imazethapyr	•	2	(
Odyssey Ultra	•	1/2	(
Poast Ultra	•	1	(
Quizalofop	•	1	
Salute	•	2/4	(
Solo Ultra	•	1/2	3
Tensile	•	2/4	9
	I		\vdash

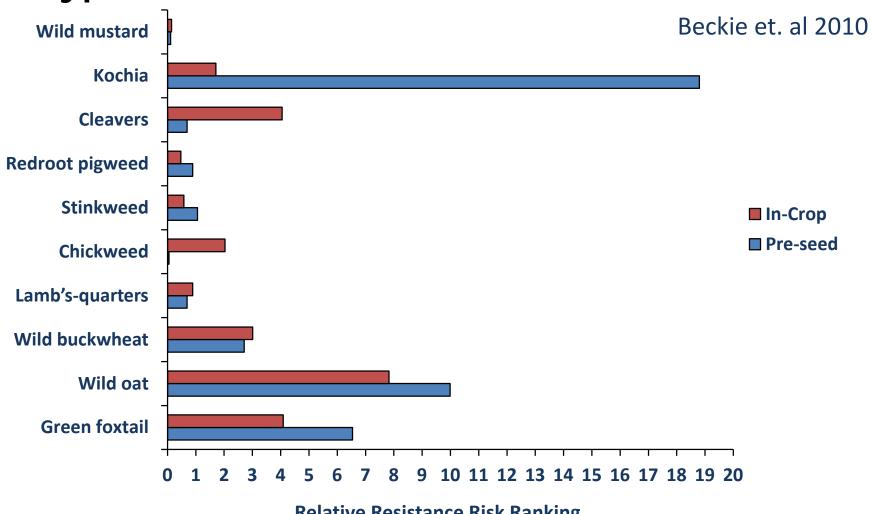
S

3

Trifluralin

	Wild	WO HER	RB	
HERBICIDE	Oat	GROU	-	
Ares	•	2		
Avadex	•	8		
Fortress MicroActiv	•	3/8		
Glufosinate 150 (1.35L/ac)	•	10		
Glyphosate	•	9		
Glyphosate+Clopyralid	•	9/4	HF	RBICIDE
Imazamox	•	2		adex
lmazamox/imazethapyr	•	2		
Odyssey Ultra	•	1/2		rtress MicroActiv
Salute	•	2/4	Glu	ufosinate 150(1.35L/ac)
Solo Ultra	•	1/2	Gly	/phosate
Tensile	•	2/4	Gly	phosate+Clopyralid

3/8

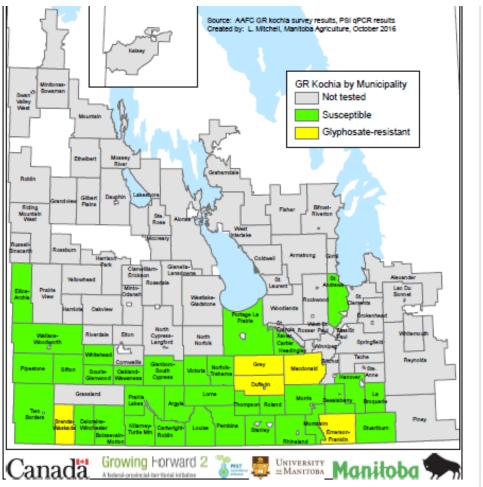

10

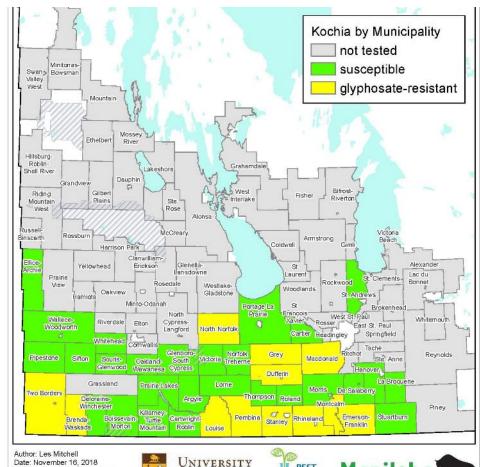
9

9/4

Glyphosate-Resistant Wild Oat?

Relative Resistance Risk Ranking




Occurrence of Glyphosate Resistant Kochia - MB

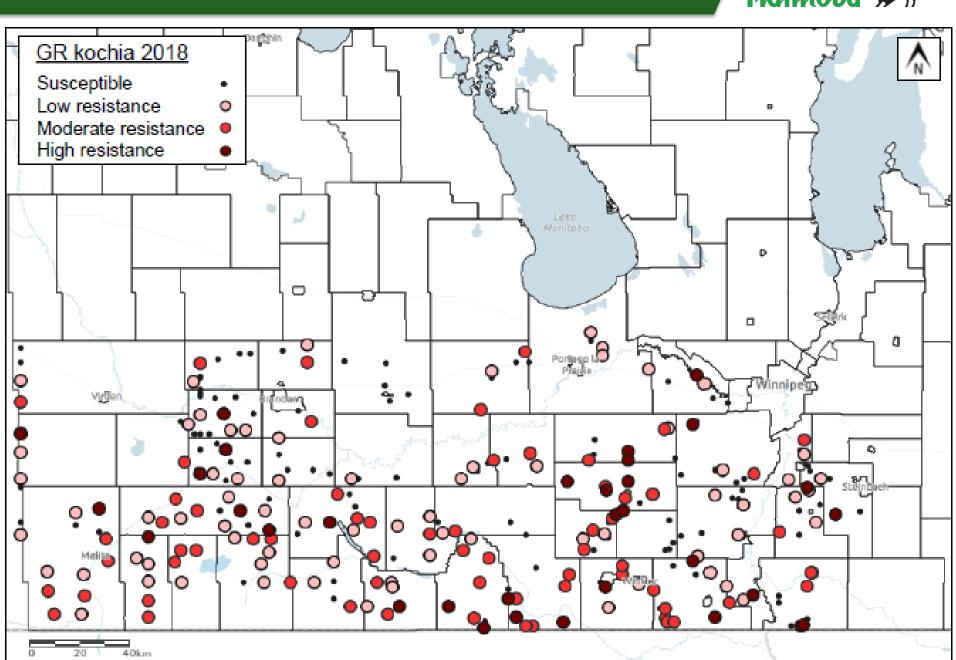
2016 2018

Source: AAFC GR kochia survey.

PSI aPCR results

OF MANITOBA

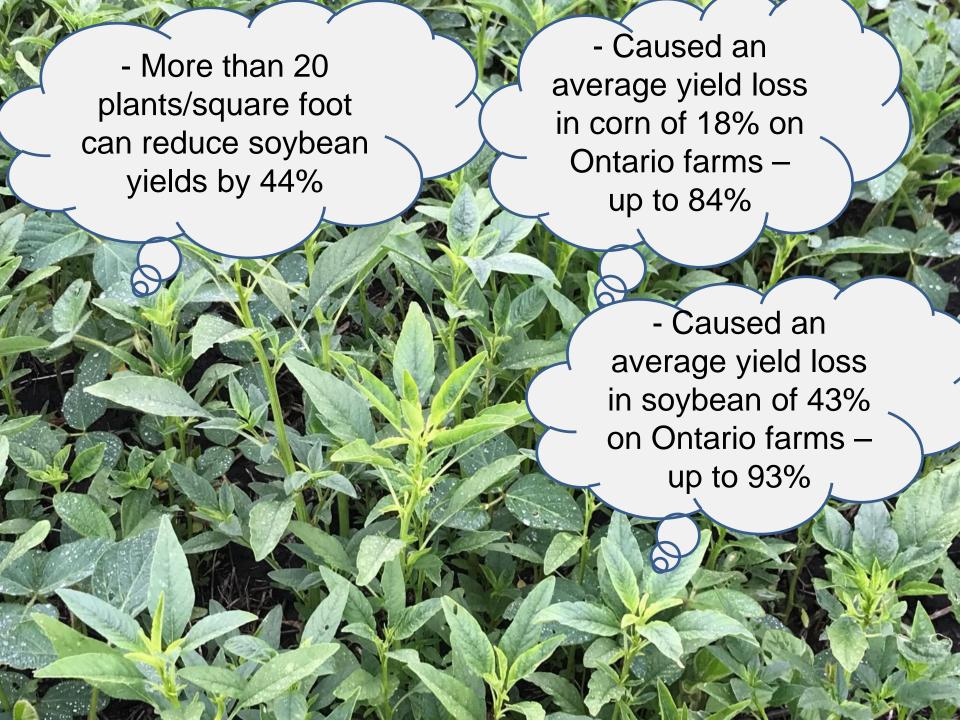
Occurrence of Glyphosate Resistant Kochia - AB


- In 2017, 305 randomly predetermined sites in 16 Alberta counties and municipal districts, were sampled post-harvest, in September and October
 - Glyphosate resistant kochia was found in 15 of the 16 municipalities
 - 100% were resistant to ALS inhibitors (Group 2 herbicides)
 - 50% were resistant to glyphosate (Group 9)
 - 8% were dicamba resistant (Group 4)
 - 10% of the samples were resistant to <u>all three</u> herbicide groups
- In 2018, 300 sites in Manitoba were collected for the same type of testing...

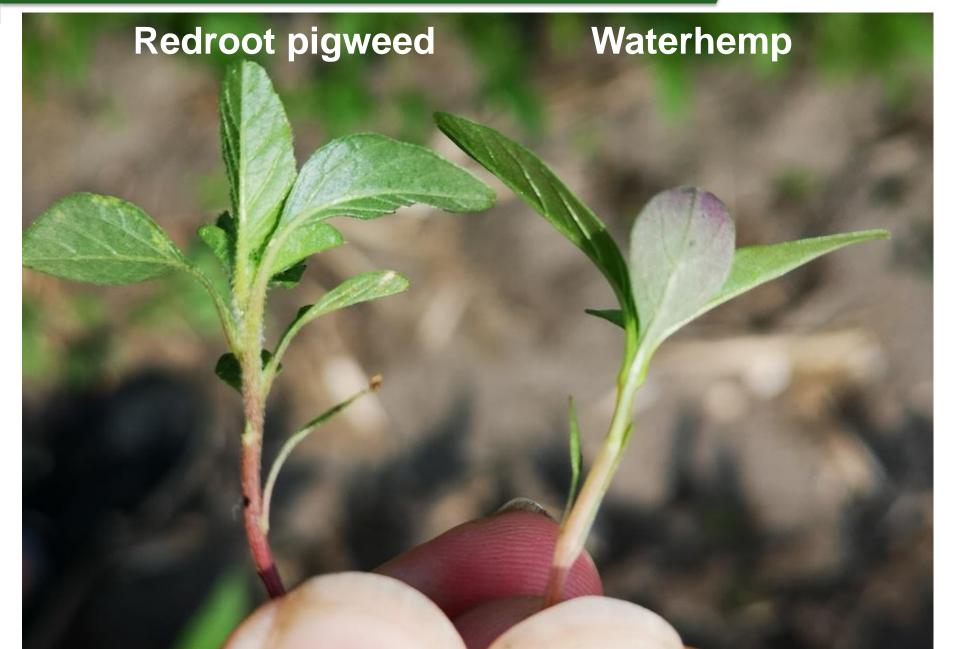
Occurrence of Glyphosate Resistant Kochia - MB

- 2013 baseline survey
 - 1% of kochia populations were GR : corn and soybean fields
- 2018 297 sites sampled
 - 59% of kochia populations GR: confirmed in a range of field crops, including soybean (77% of kochia populations), corn (70%), canola (53%), other oilseeds (83%), small-grain cereals (48%), pulses (20%), alfalfa/grass (50%), and ruderal areas (21%).
- Growers will need to shift their kochia management programs to compensate for the lack of efficacy of this important herbicide – Charles Geddes et al.
 - increased reliance on alternative herbicide sites-of-action pre-emergence
 - adoption of herbicide-resistant crops with stacked resistance traits
 - integration of non-chemical tools into current weed control programs.

2019 Weed of the Year - Waterhemp


YouTube Video:

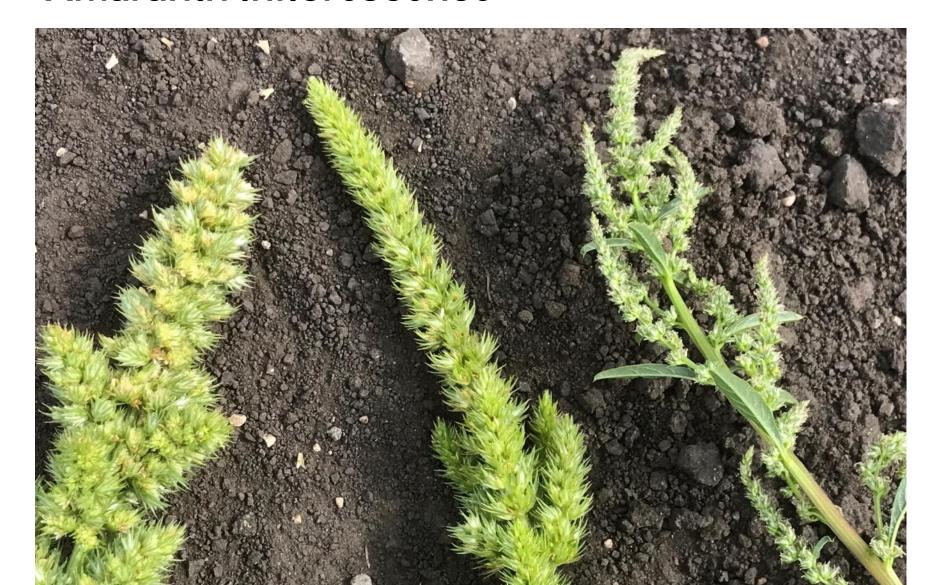
Twitter:


Q: How many Amaranth seeds are on this dime?

A: ~70 seeds, making finding contamination of crop seed lots a real challenge.

Q: How many Amaranth seeds are in this container?

A: 43,560 – Therefore seed source contamination is a major concern.



Waterhemp

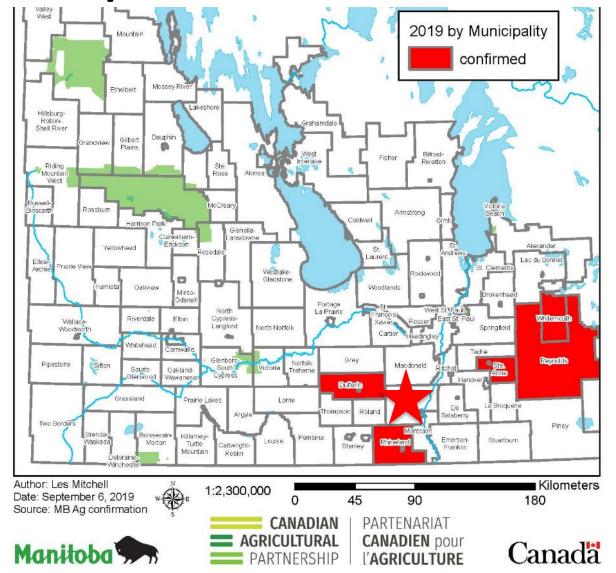
Redroot pigweed

Amaranth Inflorescence

Waterhemp (Tier 1)

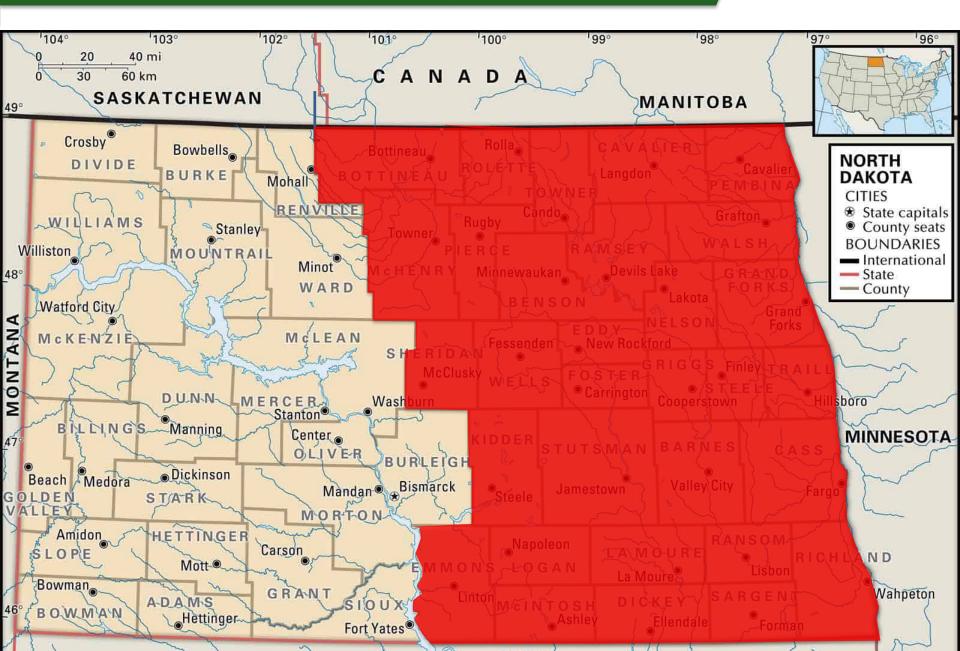
- Summer annual, C4
- Dioecious
 - Genetic variability
- Wind dispersed pollen
 - Viable up to 800m, usually <25m
 - Viable seed 14 days after pollination
- Prolific seed producer
 - >1 million seeds/female plant
 - Average 300,000 seeds/female plant
 - germinates throughout the summer especially in reduced-tillage systems
- Relatively short seed longevity
 - Typically <5 years</p>

Confirmed HR in North Dakota


Waterhemp (Tier 1)

- Caution: growth rate is 50-70% greater than many other annual weeds, multiple HR biotypes with Groups 2, 4, 5, 9, 14, 15 & 27
- Identified in 4 RMs in MB in 2019
 suspect Group 2 & 9 (possibly
 5)
- Rapid plant establishment along field perimeters, standing water, and drainage ditches

Waterhemp Distribution in Manitoba


Herbicide Resistance Testing

	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
Group 2	2/5	4/5	5/5	5/5	4/5	5/5
	1/5 – W574L	0/5 – W574L	2/5 – W574L	0/5 – W574L	4/5 – W574L	5/5 – W574L
	1/5 – S653N	4/5 – S653N	3/5 – S653N	5/5 – S653N	0/5 - S653N	0/5 - S653N
Group 5	0/5	0/5 - ?	0/5	0/5	0/5	0/5
Group 7	0/5	0/5	0/5	0/5	0/5	0/5
Group 9	5/5	4/5	5/5	2/5	5/5	5/5
Group 14	0/5	0/5	0/5	0/5	0/5	0/5

The genetic testing for Waterhemp confirmation and herbicide resistance profiles was made possible with the financial support provided by Agriculture and Agri-Food Canada through the Pest Management Centre's Pesticide Risk Reduction Program PMC. AAFC Research Scientists: Dr. Laforest, Dr. Simard, Dr. Nurse and Dr. Page; OMAFRA Weed Management Specialist, Mrs. Obeid and the MAPAQ Diagnostic Lab were integral in the implementation of this project.

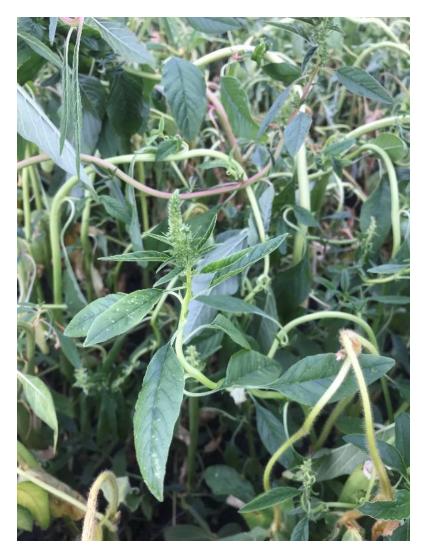
NORTH DAKOTA DISTRIBUTION

Management

- Crop canopy closure reduces germination/competition from waterhemp.
 - Use of soil residual herbicides/multiple modes of effective action
 - Narrow row spacings
 - Inter-row cultivation
 - Cover crops
 - Increased seeding rates
- crop rotation
- machinery sanitation to prevent spread
- destruction of escaped weed patches
- ON counterparts estimate waterhemp control costs at \$45-\$60/acre.
- This is why eradication of waterhemp is the goal.
 - And the law in Manitoba

Small Weeds = Effective Weed Control

Unemerged waterhemp has 1 growing point to control!


Contact herbicides like PPO inhibitors must come in contact with almost all growing points to have effective control of a weed.

6" waterhemp: >30 growing points

4" waterhemp: 14-20 growing points

2" waterhemp: 7-9 growing points

2,4-D

- typically has good activity on waterhemp
- staging is important

Shieldex 400SC

- actively growing weeds less than 10 cm tall
- control or suppression

Market Implications

Chem Options:	Your Spray to Swath Interval:	
Antler	75 days	
Arrow	75 days Liberty 150 SN	60 days When Liberty 150 SN 3 is tank mixed with
Arrow All-in	75 days	Antler, Arrow, Centurion, Clethodim, Facet L, MPower Independence, Patron, Shadow RTM, or
Centurion	75 days	Select, observe a PHI of 60 days from the date of treatment (or last treatment when a second
MPower	75 days	application has been made).
Independence		
Patron 240	75 days	
Select	75 days	
Shadow RTM	75 days	
Statue	75 days	

Market Implications

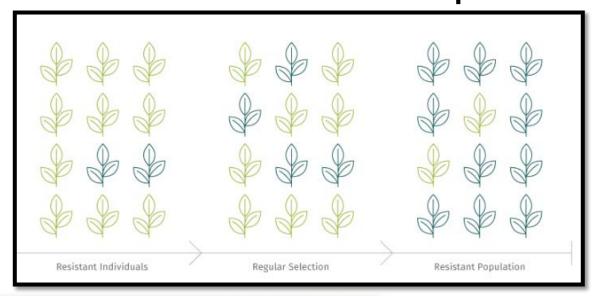
Liberty 150 SN

60 days

When Liberty 150 SN 3 is tank mixed with
Antler, Arrow, Centurion, Clethodim, Facet L,
MPower Independence, Patron, Shadow RTM, or
Select, observe a PHI of 60 days from the date of
treatment (or last treatment when a second
application has been made).

- the decisions that you make on the farm can impact market access for all
- More countries are moving away from internationally recognized standards and setting their own MRLs.
- Customers can detect residues down to parts per billion and even parts per trillion.
- Growers should assume a zero-tolerance policy in cases of missing MRLs
- Pesticide residue requirements change; keep up to date by checking with your grain buyer or referring to the pulse grower advisory on keepingitclean.ca.

Market Implications


- Phytosanitary concerns manage the risk of introduction/establishment of new weed species
- CFIA maintains a list of export markets with varying regulated/quarantine weed seeds – many are considered "Noxious" in Canada
- Commercially clean grain standards do allow for a certain percentage of weed seeds
- Some importing countries adopt post-entry measures to manage the risk
- RELATIVELY INFREQUENT

How Herbicide Resistance Spreads

How Herbicide Resistance Spreads

Seed recovered from digestive tracts of 526 ducks and geese harvested during a 2 year field study had 35,020 plants emerge. Viability rate and gut retention times indicated potential dispersal up to 2900 km

Conclusions: Study results confirm that waterfowl are consuming seeds from a variety of agronomically-important weed species, including palmer amaranth, which can remain viable after passage through digestive tracts and have potential to be dispersed over long distances by waterfowl.

The Cost of Herbicide Resistant Weeds

- Current year
 - Crop loss from competition
 - Unmarketable product or lower value product (dockage)
- Future
 - Seedbank
 - Land values
 - Complexity of other management strategies

This is after two herbicide applications!!!

The Cost of Herbicide Resistant Weeds

35 acres removed from production

- Seed and fertilizer costs = \$8, 750
- Land rental costs? varies
- Mowing, tillage etc to keep area weed free varies

VS

20 plants/ft x 10,000 seeds/plant = 200,000 seeds/ft

x 43 560 ft/acre = 8,712,000,000 seeds/acre

x 35 acres = 304,920,000,000 seeds


Herbicide Layering

304,920,000,000 seeds/35 acres

in a 90% reduction in the weed population

Layered Residual Herbicides

Objective: Prolong PRE activity until canopy fills

The Cost of Herbicide Resistant Weeds

- Not easy to manage
- Can cause substantial increases in herbicide cost - \$45-\$60/ac
- Programs have to be constantly changed due to multiple resistance that <u>will</u> develop over time (not "can", "will")
- Trend is for Palmer/waterhemp to develop resistance to any new herbicide sites of action that are used in POST treatments within about <u>3</u> (three) cycles of use.

Ohio State University Extension Agronomy Team

Improving the odds

- Australia:
 - Harvest weed seed management
 - Integrated Harrington Seed
 - Redekop Seed Control Unit
 - Chaff cart, chaff lining

- Midwest US
 - Cover crops to enhance herbicide efficacy
 - SARE study showed cover crops provided savings of \$27/acre in reduced herbicide applications with similar weed control

Questions?

No pigweed left behind Go Rogue! Stop the seed

Tammy Jones Weeds Specialist MARD

P: 204-750-1235

E: tammy.jones2@gov.mb.ca

THE OHIO STATE UNIVERSITY